Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In plasma discharges, the acceleration of electrons by a fast varying electric field and the subsequent collisional electron energy transfer determines the plasma dynamics, chemical reactivity, and breakdown. Current in situ electric field measurements require reconstruction of the temporal profile over many observations. However, such methods are unsuitable for non-repetitive and unstable plasmas. Here, we present a method for creating “movies” of dynamic electric fields in a single acquisition at sample rates of 500 × 106 fps. This ultrafast diagnostic was demonstrated in radio frequency electric fields between two parallel plates in air, as well as in Ar nanosecond-pulsed single-sided dielectric barrier discharges.more » « less
-
The Human Factors Extended Reality (XR) Showcase is an annual, interactive hands-on demonstration session of XR technologies and applications. Attendees can walk to different stations to experience the applications while the presenter explains. The 12 interactive demonstration stations highlight the integration of XR technologies and other technologies, including haptic devices and artificial intelligence, to enable human factor research and applications that span training, learning, research assessment, and simulations. Aligned with the mission of HFES, the purpose of the XR Showcase is to enable individuals to acquire knowledge about XR applications through interactive demonstrations, increase exposure of XR to the HFES community, support content visualization of interdisciplinary research, and create an exchange forum to support communication and collaboration.more » « lessFree, publicly-accessible full text available July 23, 2026
-
This alternative format session provides a forum for human factors scholars and practitioners to showcase how state-of-the-art extended reality (XR) applications are being used in academia, defense, and industry to address human factors research. The session will begin with short introductions from each presenter to describe their XR application. Afterward, session attendees will engage with the presenters and their demonstrations, which will be set up around the demonstration floor room. This year’s showcase features XR applications in STEM education, medical and aviation training, agricultural data visualization, homeland security, training design, and visitor engagement in informal learning settings. Our goal is for attendees to experience how human factors professionals use XR to support human factors-oriented research and to learn about the exciting work being conducted with these emerging technologies.more » « less
-
Abstract Non-equilibrium plasmas derive their low temperature reactivity from producing and driving energetic electrons and active species under large electric fields. Therefore, the impact of reactants on the plasma properties including electron number density, electric field, and electron temperature is critical for applications such as plasma methane (CH 4 ) reforming. Due to experimental complexity, electron properties and the electric field are rarely measured together in the same discharge. In this work, we combine time-resolved Thomson scattering and electric field induced second harmonic generation to probe electron temperature, electron density, and electric field strength in a 60 Torr CH 4 /Ar nanosecond-pulsed dielectric barrier discharge while varying the CH 4 mole fraction from 0% to 8%. These measurements are compared to a 1D numerical model to benchmark its predictions and identify areas of uncertainty. Nonlinear coupling between CH 4 addition, electron temperature, electron density, and the electric field was directly observed. Contrary to previous measurements in He, the electron temperature increased with CH 4 mole fraction. This rise in electron temperature is identified as electron heating by residual electric fields that increased with larger CH 4 mole fraction. Moreover, the electron number density has been found to decrease rapidly with the increase of methane mole fraction. Comparison of these measurements with the model yielded better agreement at higher CH 4 mole fractions and with the usage of ab initio calculated Ar electron-impact cross-sections from the B-spline R-matrix database. Furthermore, the calculated plasma properties are shown to be sensitive to the residual surface charge implanted on the quartz dielectric surfaces. Without considering surface charge in the simulations, the calculated electric field profiles agreed well with the measurements, but the electron properties were underpredicted by more than a factor of three. Therefore, measurements of either the electric field or electron properties measurements alone are insufficient to fully validate modeling predictions.more » « less
-
Planning locomotion trajectories for legged microrobots is challenging. This is because of their complex morphology, high frequency passive dynamics, and discontinuous contact interactions with their environment. Consequently, such research is often driven by time-consuming experimental methods. As an alternative, we present a framework for systematically modeling, planning, and controlling legged microrobots. We develop a three- dimensional dynamic model of a 1.5 g quadrupedal microrobot with complexity (e.g., number of degrees of freedom) similar to larger-scale legged robots. We then adapt a recently developed variational contact-implicit trajectory optimization method to generate feasible whole-body locomotion plans for this microrobot, and demonstrate that these plans can be tracked with simple joint-space controllers. We plan and execute periodic gaits at multiple stride frequencies and on various surfaces. These gaits achieve high per-cycle velocities, including a maximum of 10.87 mm/cycle, which is 15% faster than previously measured for this microrobot. Furthermore, we plan and execute a vertical jump of 9.96 mm, which is 78% of the microrobot’s center-of- mass height. To the best of our knowledge, this is the first end-to-end demonstration of planning and tracking whole-body dynamic locomotion on a millimeter-scale legged microrobot.more » « less
An official website of the United States government
